Long Arithmetic Progressions in Sets with Small Sumset

نویسندگان

  • ITZIAR BARDAJI
  • DAVID J. GRYNKIEWICZ
چکیده

Let A, B ⊆ Z be finite, nonempty subsets with minA = minB = 0, and let δ(A,B) = n 1 if A ⊆ B, 0 otherwise. If maxB ≤ maxA ≤ |A|+ |B| − 3 and (1) |A+B| ≤ |A|+ 2|B| − 3− δ(A,B), then we show A + B contains an arithmetic progression with difference 1 and length |A|+ |B| − 1. As a corollary, if (1) holds, max(B) ≤ max(A) and either gcd(A) = 1 or else gcd(A+ B) = 1 and |A+B| ≤ 2|A|+ |B| − 3, then A+B contains an arithmetic progression with difference 1 and length |A|+ |B| − 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Progressions in Sets with Small Sumsets

We present an elementary proof that if A is a finite set of numbers, and the sumset A+G A is small, |A+G A| ≤ c|A|, along a dense graph G, then A contains k-term arithmetic progressions.

متن کامل

A quantitative improvement for Roth's theorem on arithmetic progressions

We improve the quantitative estimate for Roth’s theorem on threeterm arithmetic progressions, showing that if A ⊂ {1, . . . , N} contains no nontrivial three-term arithmetic progressions then |A| N(log logN)4/ logN . By the same method we also improve the bounds in the analogous problem over Fq [t] and for the problem of finding long arithmetic progressions in a sumset.

متن کامل

k-Term Arithmetic Progressions in Very Sparse Sumsets

One of the main focuses in combinatorial (and additive) number theory is that of “understanding” the structure of the sumset A + B = {a + b : a ∈ A, b ∈ B}, given certain information about the sets A and B. For example, one such problem is to determine the length of the longest arithmetic progression in this sumset, given that A,B ⊆ {0, 1, 2, ..., N} and |A|, |B| > δN , for some 0 < δ ≤ 1. The ...

متن کامل

Consecutive Integers in High-multiplicity Sumsets

Sharpening (a particular case of) a result of Szemerédi and Vu [SV06] and extending earlier results of Sárközy [S89] and ourselves [L97b], we find, subject to some technical restrictions, a sharp threshold for the number of integer sets needed for their sumset to contain a block of consecutive integers of length, comparable with the lengths of the set summands. A corollary of our main result is...

متن کامل

Furstenberg’s proof of long arithmetic progressions: Introduction to Roth’s Theorem

These are the notes for the first of a pair of lectures that will outline a proof given by Hillel Furstenberg [3] for the existence of long arithmetic progressions in sets of integers with positive upper density, a result first proved by Szemerédi [8]. 1 History of long arithmetic progressions The first major result in the theory of long arithmetic progressions was due to van der Waerden in 192...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009